HPE injection mortar

Technical Data Sheet

Description

HPE is a high performance epoxy injection mortar with approvals for anchoring and rebar connections. This product is used in conjunction with a hand, battery or pneumatic tool and static mixer nozzle.

HPE consists of 2 components, resin and hardener, which are stored in separate compartments. These are mixed when extruded through the mixer nozzle and allow the mortar to set. Cartridges may be reused up to end of shelf life by replacing the static mixer nozzle or resealing the cap.

Usage/Purpose

HPE is suitable for anchoring of façades, roofs, timber construction, metal profiles, columns, beams, consoles, railings, sanitary devices, cable trays, piping, post-installed rebar connections and more. Especially suitable for applications with deeper embedment depths due to high flow properties.

Key Benefits

- ETA for cracked and non-cracked concrete, C20/25 to C50/60
- ETA for post installed rebar connections
- Approved for seismic performance categories C1 (threaded rods and rebar) and C2 (threaded rods)
- Suitable for dry and wet concrete including flooded holes (not sea water)
- Suitable for overhead application
- Fire rating resistance ~ F120
- NSF approval for potable water
- High chemical resistance once cured suitable for swimming pool (chlorine) and sea (salt) water environments
- Low shrinkage
- Small allowable edge distance and anchor spacing
- Design check can be performed using free VJT DesignFiX software alternatively contact technical@vjtechnology.com to model applications

Applications

HPE epoxy injection mortar is used in conjunction with the following:

- Threaded rods eg. VJT Chemical Anchor Studs (zinc, HDG, A2, A4, HCR)
- Rebar designed with either anchor theory (ETAG 001) or post-installed rebar theory (EN1992-1)

Handling & Storage

- Storage and transportation: store in a cool dry place from +5°C to +35°C.
 Keep out of direct sunlight
- Shelf life: 24 months for cartridges when stored as recommended in original, unopened condition

v1.0 CHE HPE page 1 of 16

Approvals & Certificates

Description	Authority / Laboratory	Guideline for Assessment	Number / Issue Date
ETA "Bonded anchor with anchor rod for use in concrete"	DiBt, Berlin	ETAG 001 Part 5	ETA-10/0087: Oct-2014
ETA "Post-installed rebar connection"	DiBt, Berlin	EAD 330087-00-0601	ETA-13/0319: September-2017
Fire resistance	IBMB, Braunschweig	DIN EN 1363-1:2012	Test Report No: 170019_38en Assessment Report 210104
VOC Emissions test report	Eurofins	DEVL 1101903D, DEVL 1104875A	392-2019-00382110_E_EN_03
Test report LEED	Eurofins	Leed 2009 EQ c4.1	392-2017-00105901_HA_EN_10
NSF International	NSF International	NSF/ANSI Standard 61	August-2014

Loads - Threaded Rod

Static/Quasi-static Loads

Data in this section is based on the following criteria:

- VJ Technology Injection system HPE: HPE injection mortar with threaded rod (zinc plated steel grade 5.8 / zinc plated steel grade 8.8 / stainless steel A4-70 and A4-50)
- · Correct anchor setting according to installation instructions
- Static and quasi-static loading
- Single anchor with edge distance, $c \ge 2.4 \text{ x h}_{ef}$ and axial spacing, $s \ge 4.8 \text{ x h}_{ef}$
- A single "typical" effective embedment depth as detailed in the table below
- Minimum thickness of base material as per typical effective embedment depth
- Temperature range I: -40°C to +40°C (max long term temperature +24°C and max short term temperature +40°C)
- · Hammer drilled holes
- Bold figures denote steel failure

Note that for full design with combinations of tensile/shear loads and edge distance/spacing influence, the complete assessment ETA-10/0087 must be considered. Contact VJT Technical for further advice.

Embedment

Anchor size		М8	M10	M12	M16	M20	M24	M27	M30
Typical effective embedment depth ¹⁾ , h _{ef}	[mm]	80	90	110	125	170	210	240	270
Min base material thickness for typical effective embedment, h _{min}	[mm]	110	120	140	165	220	270	305	340

1) Full embedment depth range is shown in the Installation Parameters table

|v1.0 | CHE | HPE | page 2 of 16

Characteristic Resistance

Anchor size			М8	M10	M12	M16	M20	M24	M27	M30
Non-cracked no	rmal concrete class C20/	′25								
	5.8	[kN]	18,0	29,0	42,0	70,6	111,9	153,7	187,8	224,0
Tonsion N	8.8	[kN]	29,0	42,4	58,3	70,6	111,9	153,7	187,8	224,0
Tension N _{Rk}	A4-50	[kN]	-	-	-	-	-	-	187,8	224,0
	A4-70	[kN]	26,0	41,0	58,3	70,6	111,9	153,7	-	-
	5.8	[kN]	9,0	16,0	21,0	39,0	61,0	88,0	115,0	140,0
ShoarV	8.8	[kN]	15,0	23,0	34,0	63,0	98,0	141,0	184,0	224,0
Shear V _{Rk}	A4-50	[kN]	-	-	-	-	-	-	115,0	140,0
	A4-70	[kN]	13,0	20,0	30,0	55,0	86,0	124,0	-	-
Cracked normal	concrete class C20/25									
	5.8	[kN]	-	-	31,1	40,8	64,1	87,1	112,0	140,0
Tonsion N	8.8	[kN]	-	-	31,1	40,8	64,1	87,1	112,0	140,0
Tension N _{Rk}	A4-50	[kN]	-	-	-	-	-	-	112,0	140,0
	A4-70	[kN]	-	-	31,1	40,8	64,1	87,1	-	-
	5.8	[kN]	-	-	21,0	39,0	61,0	88,0	115,0	140,0
ShoarV	8.8	[kN]	-	-	34,0	63,0	98,0	141,0	184,0	224,0
$ShearV_{Rk}$	A4-50	[kN]	-	-	-	-	-	-	115,0	140,0
	A4-70	[kN]	-	-	30,0	55,0	86,0	124,0	-	-

Design Resistance

Anchor size			М8	M10	M12	M16	M20	M24	M27	М30
Non-cracked no	rmal concrete class C20,	/25								
	5.8	[kN]	12,0	19,3	28,0	39,2	53,3	73,2	89,4	106,7
Tonsion N	8.8	[kN]	16,8	23,6	32,4	39,2	53,3	73,2	89,4	106,7
Tension N _{Rd}	A4-50	[kN]	-	-	-	-	-	-	80,4	98,3
	A4-70	[kN]	13,9	21,9	31,6	39,2	53,3	73,2	-	-
	5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
Shoar V	8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2
Shear V _{Rd}	A4-50	[kN]	-	-	-	-	-	-	48,3	58,8
	A4-70	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	-	-
Cracked normal	concrete class C20/25									
	5.8	[kN]	-	-	17,3	22,7	30,5	41,5	53,3	66,6
Tonsion N	8.8	[kN]	-	-	17,3	22,7	30,5	41,5	53,3	66,6
Tension N _{Rd}	A4-50	[kN]	-	-	-	-	-	-	53,3	66,6
	A4-70	[kN]	-	-	17,3	22,7	30,5	41,5	-	-
	5.8	[kN]	-	-	16,8	31,2	48,8	70,4	92,0	112,0
ShoarV	8.8	[kN]	-	-	27,2	50,4	78,4	112,8	147,2	179,2
$ShearV_{Rd}$	A4-50	[kN]	-	-	-	-	-	-	48,3	58,8
	A4-70	[kN]	-	-	19,2	35,3	55,1	79,5	-	-

| v1.0 | CHE | HPE | page 3 of 16

Recommended Load¹⁾

Anchor size			М8	M10	M12	M16	M20	M24	M27	М30
Non-cracked nor	mal concrete class C20,	/25				,				
	5.8	[kN]	8,6	13,8	20,0	28,0	38,1	52,3	63,9	76,2
Tonsion N	8.8	[kN]	12,0	16,8	23,1	28,0	38,1	52,3	63,9	76,2
Tension N _{Rec}	A4-50	[kN]	-	-	-	-	-	-	57,4	70,2
	A4-70	[kN]	9,9	15,7	22,5	28,0	38,1	52,3	-	-
	5.8	[kN]	5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0
Choor V	8.8	[kN]	8,6	13,1	19,4	36,0	56,0	80,6	105,1	128,0
Shear V _{Rec}	A4-50	[kN]	-	-	-	-	-	-	34,5	42,0
	A4-70	[kN]	6,0	9,2	13,7	25,2	39,4	56,8	-	-
Cracked normal	concrete class C20/25									
	5.8	[kN]	-	-	12,3	16,2	21,8	29,6	38,1	47,6
Tancian N	8.8	[kN]	-	-	12,3	16,2	21,8	29,6	38,1	47,6
Tension N _{Rec}	A4-50	[kN]	-	-	-	-	-	-	38,1	47,6
	A4-70	[kN]	-	-	12,3	16,2	21,8	29,6	-	-
	5.8	[kN]	-	-	12,0	22,3	34,9	50,3	65,7	80,0
ShoarV	8.8	[kN]	-	-	19,4	36,0	56,0	80,6	105,1	128,0
$ShearV_{Rec}$	A4-50	[kN]	-	-	-	-	-	-	34,5	42,0
	A4-70	[kN]	-	-	13,7	25,2	39,4	56,8	-	-

¹⁾ Partial safety factor $\gamma = 1.4$ for load actions is considered

Fire Resistance

Data in this section is based on the following criteria:

- Normal non-cracked and cracked concrete minimum C20/25
- Embedment depth as stated in table
- Fire attack from one side only
- $c \ge 2 h_{ef}$ and $s \ge 4 h_{ef}$

Values are valid for the use of carbon steel (minimum grade 5.8 acc. to EN 1993-1-8:2005+AC:2009) or stainless steel and high corrosion resistant steel (minimum grade 70 acc. to EN ISO 3506-1:2009) threaded rods.


If the edge distance, c is chosen in a way that steel failure / pullout is determined in the fire design, the following load values can also be applied to anchors under shear load.

Fire resistance N	Anchor size	M8	M10	M12	M16	M20	M24	M27	M30
Fire resistance N _{rk,fi} (kN)	Min. embedment h _{ef,min} (mm)	≥ 80	≥ 90	≥ 110	≥ 125	≥ 170	≥ 210	≥ 250	≥ 280
	30	0,5	1,5	3,2	8,0	15,6	22,5	29,2	35,7
Fire resistance	60	0,4	1,1	2,3	5,9	11,7	16,9	21,9	26,8
duration t _u (min)	90	0,2	0,6	1,4	3,8	7,8	11,3	14,7	17,9
	120	0,1	0,4	0,9	2,7	5,9	8,5	11,0	13,5

v1.0 CHE HPE page 4 of 16

Setting and Installation - Threaded Rod

Installation Parameters

Anchor size			М8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d _o	[mm]	10	12	14	18	24	28	32	35
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedment depth	h _{ef,max}	[mm]	96	120	144	192	240	288	324	360
Maximum torque moment	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Minimum base material thickness	h _{min}	[mm]		_{ef} + 30mı ≥ 100mm				h _{ef} + 2d ₀		
Minimum spacing	S _{min}	[mm]	40 50 60 80 100 120 135					150		
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150
Critical spacing for splitting failure	S _{cr,sp}	[mm]				2 (cr,sp			
					1,0 h _{ef}			for h/h _e	≥ 2,0	
Critical edge distance for splitting failure	C _{cr,sp}	[mm]		2 h	(2,5 - h	/h _{ef})		for 2,0 >	> h/h _{ef} > 1	1,3
Splitting failure					2,4 h _{ef}			for h/h _e	. ≤ 1,3	
Critical spacing for concrete cone failure	S _{cr,N}	[mm]	2 c _{cr,N}							
Critical edge distance for concrete cone failure	C _{cr,N}	[mm]	1,5 h _{ef}							

Working and Curing Time

Concrete temperature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ +5°C	120 mins	50 hours	100 hours
≥ +10°C	90 mins	30 hours	60 hours
≥ +20°C	30 mins	10 hours	20 hours
≥ +30°C	20 mins	6 hours	12 hours
≥ +40°C	12 mins	4 hours	8 hours

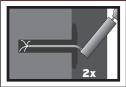
| v1.0 | CHE | HPE | page 5 of 16

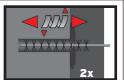
Cleaning and Setting Tools

Threaded rod size	Drill bit diameter, d ₀ (mm)	Brush diameter (min-max) [mm]	Piston plug diameter (mm)
M8	10	10,5 - 12,0	
M10	12	12,5 - 14,0	No plug required
M12	14	14,5 - 16,0	No plug required
M16	18	18,5 - 20,0	
M20	24	24,5 - 26,0	24
M24	28	28,5 - 30,0	28
M27	32	32,5 - 34,0	32
M30	35	35,5 - 37,0	35

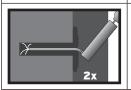
Installation Instructions

Refer to the Material Safety Data Sheet (MSDS) for guidance on safe and proper handling.


Drilling of the bore hole

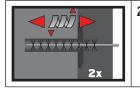

Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (page 6). In cases of aborted drill holes, the drill hole must be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.


Hand pump cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 240$ mm

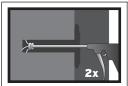
2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump a minimum of two times.

2b. Check brush diameter (table above). Brush the hole with an appropriate sized wire brush a minimum of two times in a twisting motion. If the brush does not reach the bottom of the bore hole a brush extension must be used.

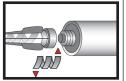


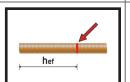
2c. | Finally blow the hole clean again with a hand pump a minimum of two times.

Compressed air cleaning for dry, wet and water-filled bore holes with all diameter in non-cracked and cracked concrete

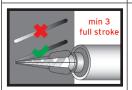

a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (oil free, min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the tool does not reach the bottom of the bore hole an extension must be used.

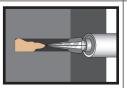
b. Check brush diameter (table above). Brush the hole with an appropriate sized wire brush a minimum of two times in a twisting motion. If the brush does not reach the bottom of the bore hole a brush extension must be used.


v1.0 CHE HPE page 6 of 16

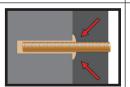


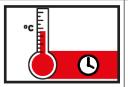
2c. Finally blow the hole clean again with compressed air (oil free, min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the tool does not reach the bottom of the bore hole an extension must be used.

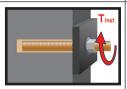

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


3. Attach the supplied static mixer nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (page 5) as well as for new cartridges, a new static mixer nozzle shall be used.

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with mortar. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190mm an extension nozzle must be used. For overhead and horizontal installation a piston plug (page 6) and extension nozzle must be used. Observe the gel/working times given on page 5.


7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the mortar until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not fulfilled the application has to be restarted. For overhead applications the anchor rod should be fixed (eq. using wedges).

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (refer to page 5).

10. After full curing, the fixture can be installed up to the max. torque (page 5) by using a calibrated torque wrench.

v1.0 | CHE | HPE | page 7 of 16

Loads - Rebar

Criteria

Data in this section is based on the following criteria:

- VJ Technology Injection System HPE: HPE injection mortar with rebar (grade B500B)
- Correct anchor setting according to installation instructions
- Static and quasi-static loading
- Single anchor with edge distance, $c \ge 2.4 \text{ x h}_{ef}$ and spacing, $s \ge 4.8 \text{ x h}_{ef}$
- A single "typical" effective embedment depth as detailed in the table below
- Minimum thickness of base material as per typical effective embedment depth
- Temperature range I: -40°C to +40°C (max long term temperature +24°C and max short term temperature +40°C)
- · Hammer drilled holes
- Bold figures denote steel failure

Note that for full design with combinations of tensile/shear loads and edge distance/spacing influence, the complete assessment ETA-10/0087 must be considered.

Embedment

Anchor size		ø8	ø10	ø12	ø14	ø16	ø20	ø25	ø28	ø32
Typical effective embedment depth ¹⁾ , h _{ef}	[mm]	80	90	110	125	145	170	210	270	300
Min base material thickness for typical effective embedment, h _{min}	[mm]	110	120	145	165	185	220	275	340	380

¹⁾ Full embedment depth range is shown in the Installation Parameters table

Characteristic Resistance

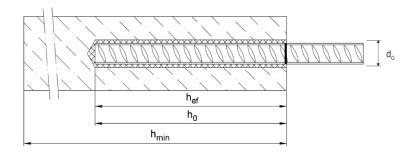
Anchor size			ø8	ø10	ø12	ø14	ø16	ø20	ø25	ø28	ø32
Non-cracked normal concrete class C20/25											
Tension N _{Rk}	B500B	[kN]	27,5	39,6	53,9	70,6	87,5	111,9	153,7	224,0	262,4
Shear V _{Rk}	B500B	[kN]	13,8	21,7	31,1	42,2	55,3	86,4	135,0	169,4	221,1
Cracked normal concrete	class C20/	25									
Tension N _{Rk}	B500B	[kN]	-	-	31,1	38,5	47,4	64,1	90,7	130,6	165,9
Shear V _{Rk}	B500B	[kN]	-	-	31,1	42,4	55,3	86,4	135,0	169,4	221,1

Design Resistance

Anchor size			ø8	ø10	ø12	ø14	ø16	ø20	ø25	ø28	ø32
Non-cracked normal concrete class C20/25											
Tension N _{Rd}	B500B	[kN]	15,6	22,0	29,9	39,2	48,6	53,3	73,2	106,7	125,0
Shear V _{Rd}	B500B	[kN]	9,2	14,5	20,7	28,2	36,9	57,6	90,0	112,9	147,4
Cracked normal concrete	class C20/	25									
Tension N _{Rd}	B500B	[kN]	-	-	17,3	21,4	26,3	30,5	43,2	62,2	79,0
Shear V _{Rd}	B500B	[kN]	-	-	20,7	28,2	36,9	57,6	90,0	112,9	147,4

v1.0 | CHE | HPE | page 8 of 16

Recommended Load¹⁾


Anchor size			ø8	ø10	ø12	ø14	ø16	ø20	ø25	ø28	ø32
Non-cracked normal cond	crete class (20/25									
Tension N _{Rec}	B500B	[kN]	11,2	15,7	21,4	28,0	34,7	38,1	52,3	76,2	89,3
Shear V _{Rec}	B500B	[kN]	6,5	10,3	14,8	20,2	26,3	41,1	64,3	80,7	105,3
Cracked normal concrete class C20/25											
Tension N _{Rec}	B500B	[kN]	-	-	12,3	15,3	18,8	21,8	30,9	44,4	56,4
Shear V _{Rec}	B500B	[kN]	-	-	14,8	20,2	26,3	41,1	64,3	80,7	105,3

1) Partial safety factor $\gamma = 1.4$ for load actions is considered

| v1.0 | CHE | HPE | page 9 of 16

Setting and Installation - Rebar

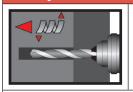
Installation Parameters

Anchor size			ø8	ø10	ø12	ø14	ø16	ø20	ø25	ø28	ø32
Nominal drill hole diameter	d _o	[mm]	12	14	16	18	20	24	32	35	40
Effective embedment	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
depth	h _{ef,max}	[mm]	96	120	144	168	192	240	300	336	384
Minimum base material thickness	h _{min}	[mm]		30mm 0mm				h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

Working and Curing Time

Concrete temperature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ +5°C	120 mins	50 hours	100 hours
≥ +10°C	90 mins	30 hours	60 hours
≥ +20°C	30 mins	10 hours	20 hours
≥ +30°C	20 mins	6 hours	12 hours
≥ +40°C	12 mins	4 hours	8 hours

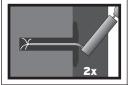
| v1.0 | CHE | HPE | page 10 of 16

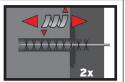

Cleaning and Setting Tools

Rebar size	Drill bit diameter, d ₀ (mm)	Brush diameter (min-max) [mm]	Piston plug diameter (mm)
ø8	12	12,5 - 14,0	
ø10	14	14,5 - 16,0	
ø12	16	16,5 - 18,0	No plug required
ø14	18	18,5 - 20,0	
ø16	20	20,5 - 22,0	
ø20	24	24,5 - 26,0	24
ø25	32	32,5 - 34,0	32
ø28	35	35,5 - 37,0	35
ø32	40	40,5 - 41,5	38

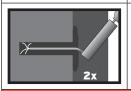
Installation Instructions

Refer to the Material Safety Data Sheet (MSDS) for guidance on safe and proper handling.


Drilling of the bore hole

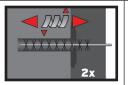

1a. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (page 10). In cases of aborted drill holes, the drill hole must be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.


Hand pump cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 240$ mm

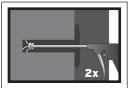
2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump a minimum of two times.

2b. Check brush diameter (table above). Brush the hole with an appropriate sized wire brush a minimum of two times in a twisting motion. If the brush does not reach the bottom of the bore hole a brush extension must be used.

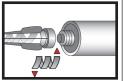


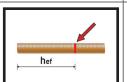
2c. Finally blow the hole clean again with a hand pump a minimum of two times.

Compressed air cleaning for dry, wet and water-filled bore holes with all diameter in non-cracked and cracked concrete

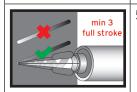

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (oil free, min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the tool does not reach the bottom of the bore hole an extension must be used.

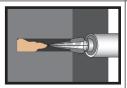
2b. Check brush diameter (table above). Brush the hole with an appropriate sized wire brush a minimum of two times in a twisting motion. If the brush does not reach the bottom of the bore hole a brush extension must be used.

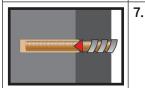

v1.0 | CHE | HPE | page 11 of 16

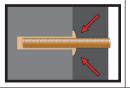


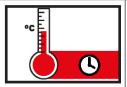
2c. Finally blow the hole clean again with compressed air (oil free, min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the tool does not reach the bottom of the bore hole an extension must be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


3. Attach the supplied static mixer nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (page 10) as well as for new cartridges, a new static mixer nozzle shall be used.


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with mortar. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190mm an extension nozzle must be used. For overhead and horizontal installation a piston plug (page 11) and extension nozzle must be used. Observe the gel/working times given on page 10.

Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the mortar until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not fulfilled the application has to be restarted. For overhead applications the anchor rod should be fixed (eg. using wedges).

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (refer to page 10).

|v1.0 | CHE | HPE | page 12 of 16

Material Properties

Mechanical Properties

Properties	Test Method	Result
UV resistance		pass
watertightness	DIN EN 12390-8	pass
temperature stability		72°C
viscosity (A-component)	ASTM D 2556	16600 mPas
viscosity (B-component)	ASTM D 2556	16400 mPas
pH-value		> 12
density		1,41 kg/dm ³
compressive strength	EN 196-1	120 N/mm ²
flexural strength	EN 196-1	42 N/mm²
E modulus	EN 196-1	10800 N/mm ²
shrinkage		< 0,02 %
shore D hardness		85
electrical resistance	IEC 93	1,2 x 10 ¹² Ωm
thermal conductivity	IEC 60093	0,47 W/m ·K

Chemical Resistance

Chemical	Concentration	Resistant
acetic acid	40	X
laitance		0
acetone	10	X
ammonia, aqueous solution	5	0
aniline	100	X
beer	100	0
chlorine	all	0
benzol	100	X
boric acid, aqueous solution		0
calcium carbonate, suspended in water	all	0
calcium chloride, suspended in water		0
calcium hydroxide, suspended in water		0
carbon tetrachloride	100	0
caustic soda solution	40	0
citric acid	all	0
chlorine water, swimming pool	all	0
deisel oil	100	0
ethyl alcohol, aqueous solution	50	Х

Chemical	Concentration	Resistant
formic acid	100	Х
formaldehyde, aqueous solution	30	0
freon		0
fuel oil		0
gasoline (premium grade)	100	0
glycol (ethylene glycol)		0
hydrochloric acid (muriatic acid)	conc.	X
hydrogen peroxide	30	Х
isopropyl alcohol	100	Х
lactic acid	all	Х
linseed oil	100	0
lubricating oil	100	0
magnesium chloride, aqueous solution	all	0
methanol	100	0
motor oil (SAE 20 W-50)	100	0
nitric acid	10	Χ
oleic acid	100	0
perchloroethylene	100	0
petroleum	100	0

| v1.0 | CHE | HPE | page 13 of 16

Chemical Resistance Cont.

Chemical	Concentration	Resistant
phenol, aqueous solution	8	Х
phosphoric acid	85	0
phosphoric acid	10	0
potash lye (potassium hydroxide, 10% and 40% solution)		0
potassium carbonate, aqueous solution	all	0
potassium chlorite, aqueous solution	all	0
potassium nitrate, aqueous solution	all	0

Chemical	Concentration	Resistant
sea water, salty	all	0
sodium carbonate	all	0
sodium chloride, aqueous solution	all	0
sulfuric acid	30	Х
tartaric acid	all	0
tetrachloroethylene	100	0
toluene		Х
trichloroethylene	100	Х
turpentine	100	0

O Resistant when subject to brief periods of chemical contact with a fully cured product

For further advice please contact VJT Technical dept.

- t. 01233 652520
- e. technical@vjtechnology.com

VJ Technology Limited Technology House, Brunswick Road, Cobbs Wood Industrial Estate, Ashford, Kent. TN23 1EN t.01233 637695 e. enquiries@vjtechnology.com www.vjtechnology.com

X Not resistant