

G&B Fissaggi S.r.I. C.so Savona 22 10029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

Declaration of Performance

No. DPGEB1035 v1.1

1. Unique identification code of the product-type: BETA Acciaio CE

2. Intended uses:

Intended use of the o	Intended use of the construction product according to ETA-20/0883							
Generic type:	Deformation-controlled expansion anchor							
Anchorages subject to:	Multiple use for non-structural application Static and quasi-static loads Anchorages with requirements related to resistance to fire M6 (8x25), M8 (10x30), M10H (12x30), M10 (12x40), M12 (15x50), M12D (16x50)							
Base materials:	 Reinforced or unreinforced normal weight concrete, of strength class C20/25 to C50/60 according to EN 206:2013+A1:2016 Non-cracked and cracked concrete 							
Environmental conditions:	Structures subject to dry internal conditions							
Reaction to fire:	Anchors satisfy requirements for Class A1							
Resistance to fire:	Resistance to fire exposure up to 120 minutes							
Installation:	Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.							
Design:	Anchorages designed under the responsibility of an engineer experienced in anchorages and concrete work. Verifiable calculation notes and drawings prepared taking account of the loads to be transmitted. The position of the anchor indicated on the design drawings. Anchorages under static and quasi-static loads and under fire exposure designed in accordance with EN 1992-4:2018, Simplified method B Fasteners only to be used for multiple use for non-structural applications acc. to EAD 330747-00-0601.							

Intended use of the o	Intended use of the construction product according to ETA-17/0176							
Generic type:	Deformation-controlled expansion anchor							
Anchorages subject to:	Static and quasi-static loads M8 (10x30), M10 (12x40), M12 (15x50), M12D (16x50), M16 (20x65), M20 (25x80)							
Base materials:	 Reinforced or unreinforced normal weight concrete, of strength class C20/25 to C50/60 according to EN 206 Non-cracked concrete 							
Environmental conditions:	Structures subject to dry internal conditions							
Reaction to fire:	Anchors satisfy requirements for Class A1							
Installation:	Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.							
Design:	Anchorages designed under the responsibility of an engineer experienced in anchorages and concrete work. Verifiable calculation notes and drawings prepared taking account of the loads to be transmitted. The position of the anchor indicated on the design drawings. Anchorages under static and quasi-static loads and under fire exposure designed in accordance with EOTA Technical Report TR 055							

3. Manufacturer: G&B Fissaggi S.r.I. C.so Savona 22, Villastellone (TO), Italia

5. System of AVCP: 1

6b.

European Assessment Document: EAD 330747-00-0601 "Fasteners for use in concrete for redundant nonstructural systems"

European Technical Assessment: ETA-20/0883

Technical Assessment Body: Instytut Techniki Budowlanej

Notified Body: 1488 INSTYTUT TECHNIKI BUDOWLANEJ (ITB)

European Assessment Document: EAD 330232-00-0601 "Mechanical fasteners for use in concrete"

European Technical Assessment: ETA-17/0176

Technical Assessment Body: Instytut Techniki Budowlanej

Notified Body: 1488 INSTYTUT TECHNIKI BUDOWLANEJ (ITB)

7. Declared performances:

Declared performances according to EAD 330747-00-0601, ETA-20/0883

Thread diameter			M6	M8	M10H	M10	M12	M12D
Essential characteristics					Perfor	mance	1	
Installatio	on parameters							
d ₀	Hole diameter	[mm]	8	10	12	12	15	16
h _{ef}	Effective anchorage depth	[mm]	25	30	30	40	50	50
h _{nom}	Installation depth	[mm]	25	30	30	40	50	50
h ₁	Minimum depth of the drilling hole	[mm]	28	33	33	43	54	54
h _{min}	Minimum thickness of the concrete member	[mm]	80	80	80	80	100	100
s _{min} = s _{cr}	Minimum and critical spacing	[mm]	200	200	200	200	200	200
$c_{min} = c_{cr}$	Minimum and critical edge distance	[mm]	150	150	150	150	150	150
d _f	Diameter of clearance hole in the fixture	[mm]	7	9	12	12	14	14
$L_{s,min}$	Minimum screwing depth	[mm]	6	8	8	10	12	12
L _{s,max}	Maximum screwing depth	[mm]	11	13	12	17	21	21
T _{inst}	Maximum installation torque	[Nm]	4	8	15	15	35	35
Resistan	ce in all load directions, with screw or threa	aded rod	property	class ≥ 4	.6			
F _{Rk}	Characteristic resistance in concrete C20/25 to C50/60	[kN]	1.5	2.0	3.0	3.0	4.0	5.0
γinst	Installation safety factor	[-]			1	.4		
Steel fail	ure with lever arm							
$M^0_{Rk,s}$	Steel characteristic bending resistance, screw class 4.6	[Nm]	6.1	15.0	29.9	29.9	52.4	52.4
$M^0{}_{Rk,s}$	Steel characteristic bending resistance, screw class 4.8	[Nm]	6.1	15.0	29.9	29.9	52.4	52.4
$M^0_{Rk,s}$	Steel characteristic bending resistance, screw class 5.8	[Nm]	7.6	18.8	37.4	37.4	65.6	65.6
$M^0_{Rk,s}$	Steel characteristic bending resistance, screw class 6.8	[Nm]	9.2	22.5	44.9	44.9	78.7	78.7
$M^0_{Rk,s}$	Steel characteristic bending resistance, screw class 8.8	[Nm]	12.2	30.0	59.9	59.9	104.9	104.9
Fire Res	istance - Resistance in all load directions, v	with screw	v or threa	aded rod	broperty o	class ≥ 4 .	6	•
$F_{Rk,fi,30}$	Characteristic resistance in concrete C20/25 to C50/60 – 30 minuti	[kN]	0.2	0.5	0.8	0.8	1.0	1.3
$F_{Rk,fi,60}$	Characteristic resistance in concrete C20/25 to C50/60 – 60 minuti	[kN]	0.2	0.5	0.8	0.8	1.0	1.3
F _{Rk,fi,90}	Characteristic resistance in concrete C20/25 to C50/60 – 90 minuti	[kN]	0.1	0.4	0.8	0.8	1.0	1.1

Thread diameter			M6	M8	M10H	M10	M12	M12D	
Essential characteristics			Performance						
F _{Rk,fi,120}	Characteristic resistance in concrete C20/25 to C50/60 – 120 minuti	[kN]	0.1 0.3 0.6 0.6 0.8			0.8			
S _{cr,fi}	Spacing	[mm]	4 ⋅ h _{ef}						
C _{cr,fi}	c _{cr,fi} Edge distance (fire from one side) [mm]		2 · h _{ef}						
C _{cr,fi}	Edge distance (fire from more than one side)	[mm]	max (300, 2 · h _{ef})						

Declared performances according to EAD 330232-00-0601, ETA-17/0176

Thread diameter			M8	M10	M12	M12D	M16	M20
Essential characteristics					Perfor	mance		
Installat	tion parameters							
d ₀	Hole diameter	[mm]	10	12	15	16	20	25
h _{ef}	Effective anchorage depth	[mm]	30	40	50	50	65	80
h _{nom}	Installation depth	[mm]	30	40	50	50	65	80
h₁	Minimum depth of the drilling hole	[mm]	33	43	54	54	70	85
h _{min}	Minimum thickness of the concrete member	[mm]	100	100	100	100	130	160
S _{min}	Minimum spacing	[mm]	41	54	68	68	88	108
Cmin	Minimum edge distance	[mm]	41	54	68	68	88	108
d _f	Diameter of clearance hole in the fixture	[mm]	9	12	14	14	18	22
L _{s,min}	Minimum screwing depth	[mm]	8	10	12	12	16	20
L _{s,max}	Maximum screwing depth	[mm]	13	17	21	21	30	30
T _{inst}	Maximum installation torque	[Nm]	8	15	35	35	60	120
Tension	n steel failure mode							
N _{Rk,s}	Characteristic tension resistance of steel class 4.6	[kN]	14.6	23.2	33.7	33.7	62.8	98.0
γMs	Partial safety factor, class 4.6	[-]	2.0					
N _{Rk,s}	Characteristic tension resistance of steel class 4.8	[kN]	14.6	23.2	33.7	33.7	62.8	98.0
γ _{Ms}	Partial safety factor, class 4.8	[-]			1	.5		
$N_{Rk,s}$	Characteristic tension resistance of steel class 5.8	[kN]	18.3	29.0	42.2	42.2	78.5	122.5
γ _{Ms}	Partial safety factor, class 5.8	[-]			1	.5		
$N_{Rk,s}$	Characteristic tension resistance of steel class 6.8	[kN]	22.0	34.8	50.6	50.6	94.2	147.0
γMs	Partial safety factor, class 6.8	[-]			1	.5		
N _{Rk,s}	Characteristic tension resistance of steel class 8.8	[kN]	29.3	46.4	67.4	67.4	125.6	196.0
γ _{Ms}	Partial safety factor, class 8.8	[-]	1.5					
	failure mode		I					
$N_{Rk,p}$	Pull-out characteristic resistance in non- cracked concrete C20/25	[kN]	n.d.1	n.d.1	n.d.1	n.d.1	25	30
ψ _{c,C30/37}	Increasing factor for concrete C30/37	[-]	1.22					
Ψc,C40/50	Increasing factor for concrete C40/50	[-]	1.41					
Ψc,C50/60	Increasing factor for concrete C50/60	[-]	1.55					

Thread diameter			M8	M10	M12	M12D	M16	M20
Essential characteristics					Perfor	mance		
$\gamma_2 = \gamma_{inst}$	Installation safety factor	[-]	1.2	1.2	1.4	1.2	1.2	1.2
Concret	e cone failure mode							
$\mathbf{k}_1 = \mathbf{k}_{ucr}$	Factor in in non-cracked concrete, design according to ETAG 001 Annex C or CEN/TS 1992-4-4:2009	[-]	10.1					
k ₁ = k _{ucr,N}	Factor in in non-cracked concrete, design according to EN 1992-4	[-]			11	1.0		
S _{cr,N}	Critical spacing	[mm]	90	120	150	150	195	240
C _{cr,N}	Critical edge distance	[mm]	45	60	75	75	97	120
$\gamma_2 = \gamma_{inst}$	Installation safety factor	[-]	1.2	1.2	1.4	1.2	1.2	1.2
Splitting	failure mode			r			r	
$N^0_{Rk,sp}$	Splitting characteristic resistance	[kN]	n.d.1	n.d.1	n.d.1	n.d.1	25	30
Ψc,C30/37	Increasing factor for concrete C30/37	[-]			1,	22		
Ψc,C40/50	Increasing factor for concrete C40/50	[-]			1,	41		
Ψc,C50/60	Increasing factor for concrete C50/60	[-]			1,	55		
S cr,sp	Critical spacing	[mm]	210	280	350	350	455	560
C _{cr,sp}	Critical edge distance	[mm]	105	140	175	175	227	280
$\gamma_2 = \gamma_{inst}$	Installation safety factor	[-]	1.2	1.2	1.4	1.2	1.2	1.2
Steel fai	lure mode without lever arm							
V _{Rk,s} = V ⁰ _{Rk,s}	Characteristic shear resistance of steel class 4.6	[kN]	7.3	11.3	16.9	16.9	31.4	49.0
γMs	Partial safety factor, class 4.6	[-]	1.67					
V _{Rk,s} = V ⁰ _{Rk,s}	Characteristic shear resistance of steel class 4.8	[kN]	7.3	11.3	16.9	16.9	31.4	49.0
γ _{Ms}	Partial safety factor, class 4.8	[-]	1.25					
V _{Rk,s} = V ⁰ _{Rk,s}	Characteristic shear resistance of steel class 5.8	[kN]	9.2	14.5	21.1	21.1	39.3	61.3
γMs	Partial safety factor, class 5.8	[-]			1.	25		
V _{Rk,s} = V ⁰ _{Rk,s}	Characteristic shear resistance of steel class 6.8	[kN]	11.0	17.4	25.3	25.3	47.1	73.5
γMs	Partial safety factor, class 6.8	[-]			1.	25		
V _{Rk,s} = V ⁰ _{Rk,s}	Characteristic shear resistance of steel class 8.8	[kN]	14.6	23.2	33.7	33.7	62.8	98.0
γ _{Ms}	Partial safety factor, class 8.8	[-]	1.25					
k = k ₂ = k ₇	Ductility factor	[-]	0.8					
Steel fai	lure mode with lever arm							
$M^0_{Rk,s}$	Characteristic bending resistance of steel class 4.6	[Nm]	15.0	29.9	52.4	52.4	133.3	259.8
γMs	Partial safety factor, class 4.6	[-]	1.67					ļ
M ⁰ _{Rk,s}	Characteristic bending resistance of steel class 4.8	[Nm]	15.0	29.9	52.4	52.4	133.3	259.8
γ _{Ms}	Partial safety factor, class 4.8	[-]			1.	25		-
M ⁰ _{Rk,s}	Characteristic bending resistance of steel class 5.8	[Nm]	18.8	37.4	65.6	65.6	166.3	324.8
γMs	Partial safety factor, class 5.8	[-]		1	1.	25	1	I

Thread diameter			M8	M10	M12	M12D	M16	M20
Essential characteristics				I	Perfor	mance		I
$M^{0}_{\mathrm{Rk},s}$	Characteristic bending resistance of steel class 6.8	[Nm]	22.5	44.9	78.7	78.7	199.9	389.7
γMs	Partial safety factor, class 6.8	[-]	1.25					
$M^0_{Rk,s}$	Characteristic bending resistance of steel class 8.8	[Nm]	30.0	59.9	104.9	104.9	266.6	519.7
γMs	Partial safety factor, class 8.8	[-]			1.	25		
Concre	te pry-out failure mode							
k = k ₃ = k ₈				1	2.0			
γмс	Partial safety factor	[-]			1	.5		
Concre	te edge failure mode							
l _{ef}	Effective length of anchor under shear load	[mm]	30	40	50	50	65	80
d _{nom}	Outside diameter of anchor	[mm]	10	12	15	16	20	25
γмс	Partial safety factor	[-]			1	.5		
Displac	ements under static and quasi-static loadir	ng, in non	-cracked	concrete	C20/25 t	o C50/60		
N = V	Tension and shear service load	[kN]	4.44	6.91	6.40	9.92	11.46	23.86
δ_{N0}	Short term displacement under tension load	[mm]	0.98	3.54	3.06	2.73	1.15	4.26
δ _{N∞}	Long term displacement under tension load	[mm]	0.50	0.50	0.38	0.50	0.50	0.50
δ_{V0}	Short term displacement under shear load	[mm]	0.98	3.54	3.06	2.73	1.15	4.26
δ _{V∞}	Long term displacement under shear load	[mm]	0.50	0.50	0.38	0.50	0.50	0.50

¹ pull-out failure is not decisive

The performance of the product identified above is in conformity with the set of declared performances. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andrea Maggioni, General manager

1699ggl S.r.I. Corso Savona, n°22 10029 VILLASTELLONE (TO) Tel. 011 9619433 - Fax 011 9619382

Villastellone, 9 February 2021